4.6 Article

Growth of curved and helical bacterial cells

期刊

SOFT MATTER
卷 8, 期 28, 页码 7446-7451

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sm25452b

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM075305] Funding Source: Medline

向作者/读者索取更多资源

A combination of cell wall growth and cytoskeletal protein action gives rise to the observed bacterial cell shape. Aside from the common rod-like and spherical shapes, bacterial cells can also adopt curved or helical geometries. To understand how curvature in bacteria is developed or maintained, we examine how Caulobacter crescentus obtains its crescent-like shape. Caulobacter cells with or without the cytoskeletal bundle crescentin, an intermediate filament-like protein, exhibit two distinct growth modes, curvature maintenance that preserves the radius of curvature and curvature relaxation that straightens the cell (Fig. 1). Using a proposed mechanochemical model, we show that bending and twisting of the crescentin bundle can influence the stress distribution in the cell wall, and lead to the growth of curved cells. In contrast, after crescentin bundle is disrupted, originally curved cells will slowly relax towards a straight rod over time. The model is able to quantitatively capture experimentally observed curvature dynamics. Furthermore, we show that the shape anisotropy of the cross-section of a curved cell is never greater than 4%, even in the presence of crescentin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据