4.6 Article

Surfactant adsorption and aggregate structure at silica nanoparticles: Effects of particle size and surface modification

期刊

SOFT MATTER
卷 8, 期 24, 页码 6573-6581

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sm25648g

关键词

-

资金

  1. European Commission [CP-CSA_INFRA-2008-1.1.1, 226507-NMI3]
  2. German Research Foundation (DFG) [IGRTG 1524]

向作者/读者索取更多资源

The influence of particle size and a surface modifier on the self-assembly of the nonionic surfactant C12E5 at silica nanoparticles was studied by adsorption measurements and small-angle neutron scattering (SANS). Silica nanoparticles of diameter 13 to 43 nm were synthesized involving the basic amino acid lysine. A strong decrease of the limiting adsorption of C12E5 with decreasing particle diameter was found. To unveil the role of lysine as a surface modifier for the observed size dependence of surfactant adsorption, the morphology of the surfactant aggregates assembled on pure siliceous nanoparticles (Ludox-TMA, 27 nm) and their evolution with increasing lysine concentration at a fixed surfactant-to-silica ratio was studied by SANS. In the absence of lysine, the surfactant forms surface micelles at silica particles. As the concentration of lysine is increased, a gradual transition from the surface micelles to detached wormlike micelles in the bulk solution is observed. The changes in surfactant aggregate morphology cause pronounced changes of the system properties, as is demonstrated by turbidity measurements as a function of temperature. These findings are discussed in terms of particle surface curvature and surfactant binding strength, which present new insight into the delicate balance between the two properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据