4.6 Article

Drop impact experiments of non-Newtonian liquids on micro-structured surfaces

期刊

SOFT MATTER
卷 8, 期 41, 页码 10725-10731

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sm26230d

关键词

-

向作者/读者索取更多资源

The spreading dynamics of Newtonian liquids have been extensively studied in hydrophilic and hydrophobic surfaces and their behaviors have been extensively explored over the last few years. However, the drop impact of non-Newtonian liquids still needs further study. Luu and Forterre (J. Fluid Mech., 2009, 632, 301) successfully found scaling laws for yield-stress fluids on hydrophilic surfaces. They also uncovered interesting and yet unexplained regimes when the impact was made on a superhydrophobic surface. In this work, we perform drop impact experiments on micro-patterned surfaces with two types of non-Newtonian liquids: one showing shear-thickening behavior and another one showing shear-thinning behavior. Our results show that a typical shear-thickening liquid such as cornstarch - at least at the relatively low concentration of 30% w/w - spreads according to the scaling laws of Newtonian liquids, whereas visco-elastic liquids like Carbopol behave as predicted by Luu and Forterre for impacts on hydrophilic surfaces, but show different scaling laws when they impact on superhydrophobic surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据