4.6 Article

Preparation of hyaluronic acid nanoparticles via hydrophobic association assisted chemical cross-linking-an orthogonal modular approach

期刊

SOFT MATTER
卷 7, 期 16, 页码 7517-7525

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1sm05785e

关键词

-

资金

  1. European Community [238551]

向作者/读者索取更多资源

The objective of this study was to develop an efficient and stable drug delivery nanocarrier based on a dually functionalized hyaluronic acid (HA) derivative which could be used as a long circulating drug delivery vehicle. Self-assembled HA nanoparticles (HA NPs) were prepared by attaching pyrene to the HA backbone and the obtained physical NPs were stabilized by chemical cross-linking of the HA chains to form hydrophobic core-hydrophilic shell NPs. Orthogonal chemoselective reactions were applied for conversion of HA into its amphiphilic derivative and subsequent cross-linking of the formed micellar-type associates. Chemical stabilization of the physical HA associates afforded therefore very stable nanoparticles that could easily be re-suspended in aqueous media after freeze-drying. In contrast, freeze-drying of the uncross-linked physically associated particles resulted in a non-soluble material. Doxorubicin (DOX), a typical anticancer drug, was entrapped into HA NPs via ionic and/or hydrophobic interactions and used for in vitro drug release. Higher loading efficiency and the slower release profile of DOX from HA NPs were obtained with the hydrophobically encapsulated drug. We have shown that free HA NPs were readily taken up by NIH 3T3 cells without causing any toxicity to the cells, while the DOX-loaded HA NPs resulted in increased cell death comparable to the free drug. This study clearly showed the applicability of orthogonal chemoselective modifications for the synthesis of stable HA nanogel particles as a potential cancer-targeted drug delivery system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据