4.6 Article

Solvent segregation and capillary evaporation at a superhydrophobic surface investigated by confocal Raman microscopy and force measurements

期刊

SOFT MATTER
卷 7, 期 3, 页码 1045-1052

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0sm00704h

关键词

-

资金

  1. Research Institutes of Sweden Holding AB (RISE)
  2. Nils and Dorthi Troedsson Foundation
  3. Omya Development AG

向作者/读者索取更多资源

Wetting of water, a 1 : 1 water/ethanol mixture and an aqueous dodecylbenzene sulfonic acid surfactant solution on hydrophobic and superhydrophobic surfaces were studied using confocal Raman microscopy. The superhydrophobic surfaces were prepared by immersion of a glass substrate in a silica particle/fluoropolymer formulation followed by silanization. Preparation of hydrophobic surfaces was done in the same way with the exception that the silica particles were excluded from the formulation. The hydrophobic and superhydrophobic surfaces were characterized with respect to surface roughness using AFM, and by contact angle measurements using different liquids. Confocal Raman microscopy measurements in a 1 : 1 water/ethanol mixture showed an enrichment of ethanol close to the superhydrophobic surface, which could not be observed for the hydrophobic surface. Unexpectedly, the Raman spectrum of a pure water film in close proximity to the superhydrophobic surface displayed some differences compared to that of bulk water and indicated a stronger hydrogen-bonding close to the superhydrophobic surface. Evidence for capillary evaporation next to the superhydrophobic surface was also found, and this results in very long-range capillary attraction between one superhydrophobic surface and a hydrophobic colloidal probe as shown by AFM colloidal probe force measurements. Addition of a surfactant or ethanol suppresses capillary evaporation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据