4.6 Article

In situ photogelation kinetics of Laponite nanoparticle-based photorheological dispersions

期刊

SOFT MATTER
卷 7, 期 21, 页码 10108-10115

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1sm06025b

关键词

-

向作者/读者索取更多资源

In situ photorheology experiments were conducted to investigate the kinetics of UV-triggered photogelation of aqueous Laponite nanoparticle dispersions formulated with less than 10 wt% of a triblock copolymer (Pluronic F127) and diphenyliodonium-2-carboxylate monohydrate, a photoacid generator (PAG). We show that gelation kinetics depend strongly on solution composition and intensity of UV light used during in situ photorheology experiments. A decrease in gelation rate was observed with increasing Pluronic F127 concentrations while higher PAG and Laponite concentrations result in higher gelation rates. Changing the intensity of UV light from 100 mW cm(-2) to 150 mW cm(-2) at a constant composition reduced the exposure time required prior to onset of gelation by half. Finally, the effect of Laponite and PAG on the micellization of F127 was probed using differential scanning calorimetry (DSC). The results show that the presence of Laponite particles and PAG suppresses the enthalpic endotherm associated with micelle formation in solutions containing up to 7.2 wt% Pluronic F127. Using these results, we present a detailed mechanism for the photogelation phenomenon as well as the parameters surrounding intelligent design and formulation of these systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据