4.6 Article

Molecular motors stiffen non-affine semiflexible polymer networks

期刊

SOFT MATTER
卷 7, 期 7, 页码 3186-3191

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0sm01004a

关键词

-

资金

  1. FOM/NWO

向作者/读者索取更多资源

Reconstituted filamentous actin networks with myosin motor proteins form active gels, in which motor proteins generate forces that drive the network far from equilibrium. This motor activity can also strongly affect the network elasticity; experiments have shown a dramatic stiffening in in vitro networks with molecular motors. Here we study the effects of motor generated forces on the mechanics of simulated 2D networks of athermal stiff filaments. We show how heterogeneous internal motor stresses can lead to stiffening in networks that are governed by filament bending modes. The motors are modeled as force dipoles that cause muscle like contractions. These contractions pull out the floppy bending modes in the system, which induces a cross-over to a stiffer stretching dominated regime. Through this mechanism, motors can lead to a nonlinear network response, even when the constituent filaments are themselves purely linear. These results have implications for the mechanics of living cells and suggest new design principles for active biomemetic materials with tunable mechanical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据