4.6 Article

The relationship between membrane curvature generation and clustering of anchored proteins: a computer simulation study

期刊

SOFT MATTER
卷 6, 期 24, 页码 6109-6118

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0sm00418a

关键词

-

资金

  1. National Natural Science Foundation of China [20736005, 20876004]
  2. Research Foundation for Young Researchers of BUCT

向作者/读者索取更多资源

The mechanism of biomembrane curvature generation has been studied for decades because of its role in many cellular functions. In this article, N-varied dissipative particle dynamics was used to investigate the relationship between membrane curvature generation and self-assembly of anchored proteins, and a protein aggregation mechanism of curvature generation was proposed. According to the mechanism, the curvature production is enhanced by the self-assembly of proteins, and the enhancement depends on the protein hydrophobic length. Contrary to the theoretic predictions that shallow insertion depth of proteins is more effective in producing positive membrane curvature, our simulations show the opposite trend if the self-assembly of proteins is taken into account. Furthermore, for the membrane proteins with deep insertion, simulations indicate that the self-assembly of proteins may induce membrane vesiculation at negative membrane tensions. In addition, the protein aggregates can sense the membrane curvature, although the way they respond to the local curvature again depends on the protein hydrophobic length. Especially, the self-assembly of shallow inserting proteins is significantly affected by the local membrane curvature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据