4.6 Article

Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities

期刊

SOFT MATTER
卷 4, 期 12, 页码 2492-2499

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b810371b

关键词

-

资金

  1. Finnish-Swedish Wood Material Science Research Program in the Centre of Excellence of Finnish Academy [77317]
  2. Walter Ahlstrom Foundation, SSF
  3. Jenny and Antti Wihuri Foundation

向作者/读者索取更多资源

Recently it was shown that enzymatic and mechanical processing of macroscopic cellulose fibers lead to disintegration of long and entangled native cellulose I nanofibers in order to form mechanically strong aqueous gels (Paakko et al., Biomacromolecules, 2007, 8, 1934). Here we demonstrate that ( 1) such aqueous nanofibrillar gels are unexpectedly robust to allow formation of highly porous aerogels by direct water removal by freeze-drying, ( 2) they are flexible, unlike most aerogels that suffer from brittleness, and ( 3) they allow flexible hierarchically porous templates for functionalities, e. g. for electrical conductivity. No crosslinking, solvent exchange nor supercritical drying are required to suppress the collapse during the aerogel preparation, unlike in typical aerogel preparations. The aerogels show a high porosity of similar to 98% and a very low density of ca. 0.02 g cm(-3). The flexibility of the aerogels manifests as a particularly high compressive strain of ca. 70%. In addition, the structure of the aerogels can be tuned from nanofibrillar to sheet-like skeletons with hierarchical micro- and nanoscale morphology and porosity by modifying the freeze-drying conditions. The porous flexible aerogel scaffold opens new possibilities for templating organic and inorganic matter for various functionalities. This is demonstrated here by dipping the aerogels in an electrically conducting polyaniline-surfactant solution which after rinsing off the unbound conducting polymer and drying leads to electrically conducting flexible aerogels with relatively high conductivity of around 1 x 10(-2) S cm(-1). More generally, we foresee a wide variety of functional applications for highly porous flexible biomatter aerogels, such as for selective delivery/separation, tissue-engineering, nanocomposites upon impregnation by polymers, and other medical and pharmaceutical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据