4.6 Article

Controllable biomolecule release from self-assembled organic nanotubes with asymmetric surfaces: pH and temperature dependence

期刊

SOFT MATTER
卷 4, 期 8, 页码 1681-1687

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b803742f

关键词

-

向作者/读者索取更多资源

The release behavior of fluorescent dyes, oligo DNAs and spherical proteins from self-assembled organic nanotubes having 7-9 nm inner diameters has been studied in terms of novel nanocontainers with high-axial ratios. Both much smaller inner diameters and asymmetric inner and outer surfaces are characteristic of the nanotubes. The acid-dissociation constant (pK(a)) of the amino groups located at the inner surface and the thermal phase transition temperature (Tg-1) of the nanotube were evaluated based on the pH titration and variable-temperature circular dichroism (CD) spectroscopic experiments, respectively. Each guest was slowly released from both open ends of the nanotube under weak alkaline conditions (pH 8.5), as a result of the decrease in electrostatic attraction between the inner surface and the guests. Elevated temperatures above the obtained Tg-1 converted the monolayer membrane of the nanotube from a solid state to a fluid one, promoting the remarkably fast release of the guests. The unique release properties of the nanotube as a nanocontainer with two terminal open ends were compared with those of liposomes that posses a closed hollow space covered with fluid bilayer membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据