4.6 Article

Replica molding of high-aspect-ratio (sub-)micron hydrogel pillar arrays and their stability in air and solvents

期刊

SOFT MATTER
卷 4, 期 5, 页码 979-984

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b717711a

关键词

-

向作者/读者索取更多资源

High aspect-ratio hydrogel pillars are attractive in applications, such as tissue engineering, actuation, and sensing. By replica molding from respective partially polymerized precursor solutions, followed by photocross-linking with ethylene glycol dimethacrylate (EGDMA), we successfully fabricated three kinds of high-aspect-ratio (up to 12) hydrogel pillar arrays, including poly(hydroxyethyl methacrylate) (PHEMA)-based, poly(hydroxyethyl methacrylate-co-N-isopropylacrylamide) (PHEMA-co-PNIPA)-based, and poly(ethylene glycol dimethacrylate) (PEGDMA) systems. In the dry state, all hydrogel pillars were mechanically robust and maintained their structural integrity. When exposed to water, PHEMA-co-PNIPA conical pillar array was wetted and swollen by water, which drastically decreased its Young's modulus. The combination of reduction in stiffness and capillary force between pillars caused PHEMA-co-PNIPA conical pillars to collapse on the substrate after drying from water in air. In comparison, highly cross-linked PEGDMA conical pillars were not wetted by water and maintained high stability since their Young's modulus exceeded the critical modulus required for pattern collapse by capillary force. When exposed to a lower surface energy solvent, ethanol, however, the PEGDMA conical pillars surface became wettable and the pillars collapsed after drying due to capillary force. Depending on the pillar array geometry, PEGDMA pillars dried from ethanol collapsed either randomly in the case of conical pillar array or in groups of four in the case of more densely packed circular pillars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据