4.6 Article

Improving the performance of differential evolution algorithm using Cauchy mutation

期刊

SOFT COMPUTING
卷 15, 期 5, 页码 991-1007

出版社

SPRINGER
DOI: 10.1007/s00500-010-0655-2

关键词

Differential evolution; Cauchy mutation; Global optimization

资金

  1. MHRD, India
  2. DST, India

向作者/读者索取更多资源

Differential evolution (DE) is a powerful yet simple evolutionary algorithm for optimization of real-valued, multimodal functions. DE is generally considered as a reliable, accurate and robust optimization technique. However, the algorithm suffers from premature convergence and/or slow convergence rate resulting in poor solution quality and/or larger number of function evaluation resulting in large CPU time for optimizing the computationally expensive objective functions. Therefore, an attempt to speed up DE is considered necessary. This research introduces a modified differential evolution (MDE) that enhances the convergence rate without compromising with the solution quality. The proposed MDE algorithm maintains a failure_counter (FC) to keep a tab on the performance of the algorithm by scanning or monitoring the individuals. Finally, the individuals that fail to show any improvement in the function value for a successive number of generations are subject to Cauchy mutation with the hope of pulling them out of a local attractor which may be the cause of their deteriorating performance. The performance of proposed MDE is investigated on a comprehensive set of 15 standard benchmark problems with varying degrees of complexities and 7 nontraditional problems suggested in the special session of CEC2008. Numerical results and statistical analysis show that the proposed modifications help in locating the global optimal solution in lesser numbers of function evaluation in comparison with basic DE and several other contemporary optimization algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据