4.6 Article

Light-induced microfluidic chip based on shape memory gold nanoparticles/poly (vinyl alcohol) nanocomposites

期刊

SMART MATERIALS AND STRUCTURES
卷 27, 期 10, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-665X/aadf6c

关键词

photothermal effect; crosslinked network; light-induced microfluidic; shape memory polymer; nanocomposite

资金

  1. National Nature Science Foundation of China [11632005, 11672086]
  2. Programme of Introducing Talents of Discipline to Universities [B06010]
  3. Foundation for Innovative Research Groups of the National Natural Science Foundation of China [11421091]

向作者/读者索取更多资源

A shape memory light-induced microfluidic technology is applied in preprogrammed microfluidic chip based on shape memory gold nanoparticles/poly (vinyl alcohol) nanocomposites. The shape memory gold nanoparticles/poly (vinyl alcohol) nanocomposites display excellent light-induced shape memory property with recovery ratio of nearly 100% in visible light. The crosslinked network of light-induced shape memory gold nanoparticles/poly (vinyl alcohol) nanocomposites forms by aldol reaction, esterification, and/or hydrogen bonding of poly (vinyl alcohol), glutaraldehyde, and gold nanoparticles. The light-induced shape memory mechanism of shape memory gold nanoparticles/poly (vinyl alcohol) nanocomposites is based on photothermal effect of gold nanoparticles and shape memory effect of poly (vinyl alcohol)based shape memory polymer (SMP). In this report, a light-induced microfluidic microvalve is demonstrated based on the shape memory gold nanoparticles/poly (vinyl alcohol) nanocomposites. This research presents demonstration of the shape memory light-induced intelligent microfluidic chip. The light-induced SMP microfluidic microvalve would yield practical, physical, and technological advantages for disposable integrated microfluidic chip laboratories.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据