4.6 Article

Polarizable force fields for molecular dynamics simulations of biomolecules

出版社

WILEY
DOI: 10.1002/wcms.1215

关键词

-

向作者/读者索取更多资源

Molecular dynamics simulations are well established for the study of biomolecular systems. Within these simulations, energy functions known as force fields are used to determine the forces acting on atoms and molecules. While these force fields have been very successful, they contain a number of approximations, included to overcome limitations in computing power. One of the most important of these approximations is the omission of polarizability, the process by which the charge distribution in a molecule changes in response to its environment. Since polarizability is known to be important in many biochemical situations, and since advances in computer hardware have reduced the need for approximations within force fields, there is major interest in the use of force fields that include an explicit representation of polarizability. As such, a number of polarizable force fields have been under development: these have been largely experimental, and their use restricted to specialized researchers. This situation is now changing. Parameters for fully optimized polarizable force fields are being published, and associated code incorporated into standard simulation software. Simulations on the hundred-nanosecond timescale are being reported, and are now within reach of all simulation scientists. In this overview, I examine the polarizable force fields available for the simulation of biomolecules, the systems to which they have been applied, and the benefits and challenges that polarizability can bring. In considering future directions for development of polarizable force fields, I examine lessons learnt from non-polarizable force fields, and highlight issues that remain to be addressed. (C) 2015 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据