4.8 Article

Facile Synthesis of Au-Nanoparticle/Polyoxometalate/Graphene Tricomponent Nanohybrids: An Enzyme-Free Electrochemical Biosensor for Hydrogen Peroxide

期刊

SMALL
卷 8, 期 9, 页码 1398-1406

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201102298

关键词

Au nanoparticles; polyoxometalates; graphene; hybrids; biosensors

资金

  1. Institute of Process Engineering, Chinese Academy of Sciences, National Natural Science Foundation of China [21071146, 51002155]
  2. University Paris-Sud 11 (CNRS), France [UMR 8000]

向作者/读者索取更多资源

A green, facile, one-pot synthesis of well-defined Au NPs@POMGNSs tricomponent nanohybrids is reported (POM stands for polyoxometalate and GNSs for graphene nanosheets). The synthesis is convenient, rapid and environmentally friendly. The POMs serve as both reducing, encapsulating molecules, and bridging molecules; this avoids the introduction of other organic toxic molecules. Characterization using transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy analysis is performed, and the structure of the prepared nanohybrids of Au NPs@POMGNSs is verified. Most importantly, the amperometric measurements show the Au NPs@POMGNSs nanohybrids have high catalytic activity with good sensitivity, good long-term stability, wide linear range, low detection limit, and fast response towards H2O2 detection for application as an enzyme-free biosensor. Transformation of the POMs during H2O2 detection does not affect the catalytic activities of the nanohybrids. Thus, the synergistic effect of Au NPs and GNSs in the nanohybrids leads to the enhanced catalytic property.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据