4.8 Review

Solution-Based Synthesis and Design of Late Transition Metal Chalcogenide Materials for Oxygen Reduction Reaction (ORR)

期刊

SMALL
卷 8, 期 1, 页码 13-27

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201101573

关键词

chalcogenides; nanostructures; synthesis; oxygen reduction reaction; electrocatalyst; fuel cells

资金

  1. National Basic Research Program of China [2010CB934700]
  2. National Natural Science Foundation of China (NSFC) [91022032, 50732006]
  3. International Science & Technology Cooperation Program of China [2010DFA41170]
  4. National Synchrotron Radiation Laboratory at the University of Science and Technology of China

向作者/读者索取更多资源

Late transition metal chalcogenide (LTMC) nanomaterials have been introduced as a promising Pt-free oxygen reduction reaction (ORR) electrocatalysts because of their low cost, good ORR activity, high methanol tolerance, and facile synthesis. Herein, an overview on the design and synthesis of LTMC nanomaterials by solution-based strategies is presented along with their ORR performances. Current solution-based synthetic approaches towards LTMC nanomaterials include a hydrothermal/solvothermal approach, single-source precursor approach, hot-injection approach, template-directed soft synthesis, and Kirkendall-effect-induced soft synthesis. Although the ORR activity and stability of LTMC nanomaterials are still far from what is needed for practical fuel-cell applications, much enhanced electrocatalytic performance can be expected. Recent advances have emphasized that decorating the surface of the LTMC nanostructures with other functional nanoparticles can lead to much better ORR catalytic activity. It is believed that new synthesis approaches to LTMCs, modification techniques of LTMCs, and LTMCs with desirable morphology, size, composition, and structures are expected to be developed in the future to satisfy the requirements of commercial fuel cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据