4.8 Article

Assembly and Degradation of Low-Fouling Click-Functionalized Poly(ethylene glycol)-Based Multilayer Films and Capsules

期刊

SMALL
卷 7, 期 8, 页码 1075-1085

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201002258

关键词

-

资金

  1. Australian Research Council
  2. Fraunhofer Society

向作者/读者索取更多资源

Nano-/micrometer-scaled films and capsules made of low-fouling materials such as poly(ethylene glycol) (PEG) are of interest for drug delivery and tissue engineering applications. Herein, the assembly and degradation of low-fouling, alkyne-functionalized PEG (PEG(Alk)) multilayer films and capsules, which are prepared by combining layer-by-layer (LbL) assembly and click chemistry, are reported. A nonlinear, temperature-responsive PEG(Alk) is synthesized, and is then used to form hydrogen-bonded multilayers with poly(methacrylic acid) (PMA) at pH 5. The thermoresponsive behavior of PEG(Alk) is exploited to tailor film buildup by adjusting the assembly conditions. Using alkyne-azide click chemistry, PEG(Alk)/PMA multilayers are crosslinked with a bisazide linker that contains a disulfide bond, rendering these films and capsules redox-responsive. At pH 7, by disrupting the hydrogen bonding between the polymers, PEG(Alk) LbL films and PEG(Alk)-based capsules are obtained. These films exhibit specific deconstruction properties under simulated intracellular reducing conditions, but remain stable at physiological pH, suggesting potential applications in controlled drug release. The low-fouling properties of the PEG films are confirmed by incubation with human serum and a blood clot. Additionally, these capsules showed negligible toxicity to human cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据