4.8 Article

Tunable Vancomycin Releasing Surfaces for Biomedical Applications

期刊

SMALL
卷 6, 期 21, 页码 2392-2404

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201001150

关键词

-

资金

  1. Institute for Soldier Nanotechnologies, MIT through the U.S. Army Research Laboratory
  2. National Science Foundation
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [819762] Funding Source: National Science Foundation

向作者/读者索取更多资源

Local drug delivery methods allow for the opportunity to supply potent multispectrum antibiotics such as vancomycin hydrochloride to sites of infection, while avoiding systemic toxicity. In this work, layer-by-layer assembly of polymer multilayer films is applied to create vancomycin delivery coatings. By taking advantage of the versatile layer-by-layer spray and dip coating techniques, thin films were generated based on electrostatic and other secondary interactions discovered to exist between the film components. The importance of film interdiffusion during growth in promoting interactions between film components is found to be critical in the direct incorporation of the weakly charged vancomycin drug in these multilayer films. The resulting coatings are engineered with unprecedented drug densities ranging from 17-220 mu g mm(-3) (approximately 20 wt%) for films that are micron to submicron scale in thickness, delivering vancomycin over timescales of 4 h to 2.5 days. The released drug is highly effective in inhibiting Staphylococcus aureus growth in vitro. Taking advantage of the difference in release characteristics between dip and spray assembled films, a composite film architecture was engineered to have both a bolus vancomycin release followed by a period of linear sustained drug release. The control over drug densities and release profiles displayed in this work is necessary to address the requirements of varying medical conditions, including those where immediate infection elimination is needed or long term infection prevention is required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据