4.8 Article

Fluorescent-Magnetic Hybrid Nanoparticles Induce a Dose-Dependent Increase in Proinflammatory Response in Lung Cells in vitro Correlated with Intracellular Localization

期刊

SMALL
卷 6, 期 6, 页码 753-762

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.200901770

关键词

dendritic cells; epithelial lung cells; macrophages; magnetic-fluorescent-hybrid nanoparticles; proinflammatory response

资金

  1. Research Foundation [DFG SPP 1313]
  2. Swiss National Foundation [3100A0_118420]

向作者/读者索取更多资源

Iron platinum nanoparticles embedded in a poly(methacrylic acid) (PMA) polymer shell and fluorescently labeled with the dye ATTO 590 (FePt-PMA-ATTO-2%) are investigated in terms of their intracellular localization in lung cells and potential to induce a proinflammatory response dependent on concentration and incubation time. A gold core coated with the same polymer shell (Au-PMA-ATTO-2%) is also included. Using laser scanning and electron microscopy techniques, it is shown that the FePt-PMA-ATTO-2% particles penetrate all three types of cell investigated but to a higher extent in macrophages and dendritic cells than epithelial cells. In both cell types of the defense system but not in epithelial cells, a particle-dose-dependent increase of the cytokine tumor necrosis factor alpha (TNF alpha) is found. By comparing the different nanoparticles and the mere polymer shell, it is shown that the cores combined with the shells are responsible for the induction of proinflammatory effects and not the shells alone. It is concluded that the uptake behavior and the proinflammatory response upon particle exposure are dependent on the time, cell type, and cell culture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据