4.8 Article

Colorimetric Protein Sensing by Controlled Assembly of Gold Nanoparticles Functionalized with Synthetic Receptors

期刊

SMALL
卷 5, 期 21, 页码 2445-2452

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.200900530

关键词

bioassays; gold; helical structures; hybrid materials; nanoparticles

资金

  1. CeNano
  2. Swedish Research Council
  3. Swedish Foundation for Strategic Research (SSF)

向作者/读者索取更多资源

A novel strategy is described for the colorimetric sensing of proteins, based on polypeptide-functionalized gold nanoparticles. Recognition is accomplished using a polypeptide sensor scaffold designed to specifically bind to the model analyte, human carbonic anhydrase II (HCAII). The extent of particle aggregation, induced by the Zn2+-triggered dimerization and folding of a second polypeptide also present on the surface of the gold nanoparticle, gives a readily detectable colorimetric shift that is dependent on the concentration of the target protein. In the absence of HCAII, particle aggregation results in a major redshift of the plasmon peak, whereas analyte binding prevented the formation of dense aggregates, significantly reducing the magnitude of the redshift. The versatility of the technique is demonstrated using a second model system based on the recognition of a peptide sequence from the tobacco mosaic virus coat protein (TMVP) by a recombinant antibody fragment (Fab57P). Concentrations down to approximate to 10 nM and approximate to 25 nM are detected for HCAII and Fab57P, respectively. This strategy is proposed as a generic platform for robust and specific protein analysis that can be further developed to monitor a wide range of target proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据