4.8 Article

Micro-organism-triggered release of silver nanoparticles from biodegradable oxide carriers allows preparation of self-sterilizing polymer surfaces

期刊

SMALL
卷 4, 期 6, 页码 824-832

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.200800047

关键词

antimicrobial; controlled release; nanocomposites; silver; smart materials

向作者/读者索取更多资源

The antimicrobial activity of silver has attracted significant research interest and contributes to an exponentially growing use of this noble metal in commodity products. In this investigation, we describe a general approach to increase the antimicrobial activity of a silver-containing surface by two to three orders of magnitude. The use of 1-2-nm silver particles decorating the surface of 20-50-nm carrier particles consisting of a phosphate-based, biodegradable ceramic allows the triggered release of silver in the presence of a growing microorganism. This effect is based on the organism's requirements for mineral uptake during growth creating a flux of calcium, phosphate, and other ions to the organism. The growing micro-organism dissolves the carrier containing these nutrients and thereby releases the silver nanoparticles. Further, we demonstrate the rapid self-sterilization of polymer surfaces containing silver on calcium phosphate nanoparticles using a series of human pathogens. Colony-forming units (viable bacteria or fungi counts) have been routinely reduced below detection limit and suggest application of these self-sterilizing surfaces in hospital environments, food and pharmaceutical processing, and personal care.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据