4.6 Article

Theoretical predictions and experimental validations on machining the Nimonic C-263 super alloy

期刊

SIMULATION MODELLING PRACTICE AND THEORY
卷 40, 期 -, 页码 192-207

出版社

ELSEVIER
DOI: 10.1016/j.simpat.2013.09.008

关键词

Simulation; Nimonic C-263 alloy; Cutting force; Cutting temperature; Effective stress and strain

向作者/读者索取更多资源

The current paper presents the simulated 3D Finite Element Model (FEM) and experimental validation while turning the Nimonic C-263 super alloy using a cemented carbide cutting tool. FEM machining simulations was carried out using a Lagrangian finite element based machining model to predict the tangential cutting force, temperature distribution at tool tip and the effective stress and strain. All simulations were performed according to the cutting conditions designed, using the orthogonal array. The work piece was considered as perfectly plastic and its shape was taken as a curved model. An experimental validation of the cutting process was conducted in order to verify the simulated results of tangential cutting force and temperature at tool tip and the comparison shows that the percentage error 6% was observed and the shear friction factor 0.6 indicates good agreement between the simulated results and the experiment results. As the cutting speed is increased from 22 m/min to 54 m/min at higher feed rate, a larger strain to an extent of up to 6.55 mm/mm, a maximum value of 810 MPa stress and higher temperature localization to an extent of 620 degrees C at tool tip were observed. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据