4.6 Article

On large-scale diagonalization techniques for the Anderson model of localization

期刊

SIAM REVIEW
卷 50, 期 1, 页码 91-112

出版社

SIAM PUBLICATIONS
DOI: 10.1137/070707002

关键词

Anderson model of localization; large-scale eigenvalue problem; Lanczos algorithm; Jacobi-Davidson algorithm; Cullum-Willoughby implementation; symmetric indefinite matrix; multilevel preconditioning; maximum weighted matching

资金

  1. Engineering and Physical Sciences Research Council [EP/C007042/1] Funding Source: researchfish

向作者/读者索取更多资源

We propose efficient preconditioning algorithms for an eigenvalue problem arising in quantum physics, namely, the computation of a few interior eigenvalues and their associated eigenvectors for large-scale sparse real and symmetric indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation by Cullum and Willoughby with the shift-and-invert techniques ill the implicitly restarted Lanczos method and in the Jacobi-Davidson method. Our preconditioning approaches for the shift-and-invert symmetric indefinite linear system are based on maximum weighted matchings and algebraic multilevel incomplete LDLT factorizations. These techniques can be seen as a complement to the alternative idea of using more complete pivoting techniques for the highly ill-conditioned symmetric indefinite Anderson matrices. We demonstrate the effectiveness and the numerical accuracy of these algorithms. Our numerical examples reveal that recent algebraic multilevel preconditioning solvers can accelerate the computation of a large-scale eigenvalue problem corresponding to the Anderson model of localization by several orders of magnitude.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据