4.7 Article

Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency

期刊

SCIENTIFIC REPORTS
卷 5, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep11141

关键词

-

资金

  1. CREST (Core Research for Evolutional Science and Technology) of the Science and Technology Corporation (JST) of Japan
  2. New Energy Development Organization (NEDO) of Japan

向作者/读者索取更多资源

Efficient photocatalytic water splitting requires effective generation, separation and transfer of photo-induced charge carriers that can hardly be achieved simultaneously in a single material. Here we show that the effectiveness of each process can be separately maximized in a nanostructured heterojunction with extremely thin absorber layer. We demonstrate this concept on WO3/BiVO4+CoPi core-shell nanostructured photoanode that achieves near theoretical water splitting efficiency. BiVO4 is characterized by a high recombination rate of photogenerated carriers that have much shorter diffusion length than the thickness required for sufficient light absorption. This issue can be resolved by the combination of BiVO4 with more conductive WO3 nanorods in a form of coreshell heterojunction, where the BiVO4 absorber layer is thinner than the carrier diffusion length while it's optical thickness is reestablished by light trapping in high aspect ratio nanostructures. Our photoanode demonstrates ultimate water splitting photocurrent of 6.72 mA cm(-2) under 1 sun illumination at 1.23 VRHE that corresponds to -90% of the theoretically possible value for BiVO4. We also demonstrate a self-biased operation of the photoanode in tandem with a double-junction GaAs/InGaAsP photovoltaic cell with stable water splitting photocurrent of 6.56 mA cm(-2) that corresponds to the solar to hydrogen generation efficiency of 8.1%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据