4.6 Article

A FAST DIRECT SOLVER FOR STRUCTURED LINEAR SYSTEMS BY RECURSIVE SKELETONIZATION

期刊

SIAM JOURNAL ON SCIENTIFIC COMPUTING
卷 34, 期 5, 页码 A2507-A2532

出版社

SIAM PUBLICATIONS
DOI: 10.1137/120866683

关键词

fast algorithms; multilevel matrix compression; interpolative decomposition; sparse direct solver; integral equations; fast multipole method

资金

  1. National Science Foundation [DGE-0333389]
  2. U.S. Department of Energy [DEFG0288ER25053]
  3. Air Force Office of Scientific Research under NSSEFF [FA9550-10-1-0180]

向作者/读者索取更多资源

We present a fast direct solver for structured linear systems based on multilevel matrix compression. Using the recently developed interpolative decomposition of a low-rank matrix in a recursive manner, we embed an approximation of the original matrix into a larger but highly structured sparse one that allows fast factorization and application of the inverse. The algorithm extends the Martinsson-Rokhlin method developed for 2D boundary integral equations and proceeds in two phases: a precomputation phase, consisting of matrix compression and factorization, followed by a solution phase to apply the matrix inverse. For boundary integral equations which are not too oscillatory, e. g., based on the Green functions for the Laplace or low-frequency Helmholtz equations, both phases typically have complexity O(N) in two dimensions, where N is the number of discretization points. In our current implementation, the corresponding costs in three dimensions are O(N-3/2) and O(N log N) for precomputation and solution, respectively. Extensive numerical experiments show a speedup of similar to 100 for the solution phase over modern fast multipole methods; however, the cost of precomputation remains high. Thus, the solver is particularly suited to problems where large numbers of iterations would be required. Such is the case with ill-conditioned linear systems or when the same system is to be solved with multiple right-hand sides. Our algorithm is implemented in Fortran and freely available.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据