4.6 Article Proceedings Paper

MODEL REDUCTION FOR LARGE-SCALE SYSTEMS WITH HIGH-DIMENSIONAL PARAMETRIC INPUT SPACE

期刊

SIAM JOURNAL ON SCIENTIFIC COMPUTING
卷 30, 期 6, 页码 3270-3288

出版社

SIAM PUBLICATIONS
DOI: 10.1137/070694855

关键词

model reduction; optimization; sampling; heat conduction

向作者/读者索取更多资源

A model-constrained adaptive sampling methodology is proposed for the reduction of large-scale systems with high-dimensional parametric input spaces. Our model reduction method uses a reduced basis approach, which requires the computation of high-fidelity solutions at a number of sample points throughout the parametric input space. A key challenge that must be addressed in the optimization, control, and probabilistic settings is the need for the reduced models to capture variation over this parametric input space, which, for many applications, will be of high dimension. We pose the task of determining appropriate sample points as a PDE-constrained optimization problem, which is implemented using an efficient adaptive algorithm that scales well to systems with a large number of parameters. The methodology is demonstrated using examples with parametric input spaces of dimension 11 and 21, which describe thermal analysis and design of a heat conduction fin, and compared with statistically based sampling methods. For these examples, the model-constrained adaptive sampling leads to reduced models that, for a given basis size, have error several orders of magnitude smaller than that obtained using the other methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据