4.3 Article

HANKEL MATRIX RANK MINIMIZATION WITH APPLICATIONS TO SYSTEM IDENTIFICATION AND REALIZATION

期刊

出版社

SIAM PUBLICATIONS
DOI: 10.1137/110853996

关键词

rank minimization; nuclear norm; Hankel matrix; first-order method; system identification; system realization

向作者/读者索取更多资源

We introduce a flexible optimization framework for nuclear norm minimization of matrices with linear structure, including Hankel, Toeplitz, and moment structures and catalog applications from diverse fields under this framework. We discuss various first-order methods for solving the resulting optimization problem, including alternating direction methods of multipliers, proximal point algorithms, and gradient projection methods. We perform computational experiments to compare these methods on system identification problems and system realization problems. For the system identification problem, the gradient projection method (accelerated by Nesterov's extrapolation techniques) and the proximal point algorithm usually outperform other first-order methods in terms of CPU time on both real and simulated data, for small and large regularization parameters, respectively, while for the system realization problem, the alternating direction method of multipliers, as applied to a certain primal reformulation, usually outperforms other first-order methods in terms of CPU time. We also study the convergence of the proximal alternating direction methods of multipliers used in this paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据