4.7 Article

From Soybean residue to advanced supercapacitors

期刊

SCIENTIFIC REPORTS
卷 5, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep16618

关键词

-

资金

  1. Spanish Ministerio de Economia y Competitividad, MINECO [MAT2012-31651]
  2. Fondo Europeo de Desarrollo Regional (FEDER)
  3. ICYT Regional Project [GRUPIN14-102]

向作者/读者索取更多资源

Supercapacitor technology is an extremely timely area of research with fierce international competition to develop cost-effective, environmentally friendlier EC electrode materials that have real world application. Herein, nitrogen-doped carbons with large specific surface area, optimized micropore structure and surface chemistry have been prepared by means of an environmentally sound hydrothermal carbonization process using defatted soybean (i.e., Soybean meal), a widely available and cost-effective protein-rich biomass, as precursor followed by a chemical activation step. When tested as supercapacitor electrodes in aqueous electrolytes (i.e. H2SO4 and Li2SO4), they demonstrate excellent capacitive performance and robustness, with high values of specific capacitance in both gravimetric (250-260 and 176 F g(-1) in H2SO4 and Li2SO4 respectively) and volumetric (150-210 and 102 F cm(-3) in H2SO4 and Li2SO4 respectively) units, and remarkable rate capability (>60% capacitance retention at 20 A g(-1) in both media). Interestingly, when Li2SO4 is used, the voltage window is extended up to 1.7 V (in contrast to 1.1 V in H2SO4). Thus, the amount of energy stored is increased by 50% compared to H2SO4 electrolyte, enabling this environmentally sound Li2SO4-based supercapacitor to deliver similar to 12 Wh kg(-1) at a high power density of similar to 2 kW kg(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据