4.5 Article

PHASE SEPARATION DYNAMICS IN ISOTROPIC ION-INTERCALATION PARTICLES

期刊

SIAM JOURNAL ON APPLIED MATHEMATICS
卷 74, 期 4, 页码 980-1004

出版社

SIAM PUBLICATIONS
DOI: 10.1137/130937548

关键词

nonlinear dynamics; Cahn-Hilliard reaction model; Butler-Volmer kinetics; intercalation; phase separation; surface wetting; lithium-ion battery; nanoparticles; lithium iron phosphate

资金

  1. National Science Foundation [1122374]
  2. Samsung-MIT Alliance

向作者/读者索取更多资源

Lithium-ion batteries exhibit complex nonlinear dynamics, resulting from diffusion and phase transformations coupled to ion-intercalation reactions. Using the recently developed Cahn-Hilliard reaction (CHR) theory, we investigate a simple mathematical model of ion intercalation in a spherical solid nanoparticle, which predicts transitions from solid-solution radial diffusion to two-phase shrinking-core dynamics. This general approach extends previous lithium-ion battery models, which either neglect phase separation or postulate a spherical shrinking-core phase boundary, by predicting phase separation only under appropriate circumstances. The effect of the applied current is captured by generalized Butler-Volmer kinetics, formulated in terms of diffusional chemical potentials, and the model consistently links the evolving concentration profile to the battery voltage. We examine sources of charge/discharge asymmetry, such as asymmetric charge transfer and surface wetting by ions within the solid, which can lead to three distinct phase regions. In order to solve the fourth-order nonlinear CHR initial-boundary-value problem, a control-volume discretization is developed in spherical coordinates. The basic physics are illustrated by simulating many representative cases, including a simple model of the popular cathode material, lithium iron phosphate (neglecting crystal anisotropy and coherency strain). Analytical approximations are also derived for the voltage plateau as a function of the applied current.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据