4.2 Article

Simulation of impulse effects from explosive charges containing metal particles

期刊

SHOCK WAVES
卷 20, 期 3, 页码 217-239

出版社

SPRINGER
DOI: 10.1007/s00193-010-0249-z

关键词

Detonation; Blast wave; Heterogeneous explosive; Impulsive loading; Multiphase flow

向作者/读者索取更多资源

The propagation of an explosive blast wave containing inert metal particles is investigated numerically using a robust two-phase methodology with appropriate models to account for real gas behavior, inter-phase interactions, and inter-particle collisions to study the problem of interest. A new two-phase Eulerian-Lagrangian formulation is proposed that can handle the dense nature of the flow-field. The velocity and momentum profiles of the gas and particle phases are analyzed and used to elucidate the inter-phase momentum transfer, and its effect on the impulsive aspects of heterogeneous explosive charges. The particles are found to pick up significant amounts of momentum and kinetic energy from the gas, and by virtue of their inertia, are observed to sustain it for a longer time. The impulse characteristics of heterogeneous explosives are compared with a homogeneous explosive containing the same amount of high explosive, and it is observed that the addition of solid particles augments the impulsive loading significantly in the near-field, and to a smaller extent in the far-field. The total impulsive loading is found to be insensitive to the particle size added to the explosive charge above a certain cut-off radius, but the individual impulse components are found to be sensitive, and particles smaller than this cut-off size deliver about 8% higher total impulse than the larger ones. Overall, this study provides crucial insights to understand the impulsive loading characteristics of heterogeneous explosives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据