4.6 Article

POST-BURN HEPATIC INSULIN RESISTANCE IS ASSOCIATED WITH ENDOPLASMIC RETICULUM (ER) STRESS

期刊

SHOCK
卷 33, 期 3, 页码 299-305

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/SHK.0b013e3181b2f439

关键词

Insulin resistance; phosphatidylinositol 3 kinase/Akt; ER stress; burn injury

资金

  1. American Surgical Association Foundation
  2. Shriners Hospitals for Children [8460, 8660]
  3. National Institutes of Health [RO1-GM56687, RO1-HD049471]

向作者/读者索取更多资源

Insulin resistance with its associated hyperglycemias represents one significant contributor to mortality in burned patients. A variety of cellular stress-signaling pathways are activated as a consequence of burn. A key player in the cellular stress response is the endoplasmic reticulum (ER). Here, we investigated a possible role for ER-stress pathways in the progression of insulin function dysregulation postburn. Rats received a 60% total body surface area thermal injury, and a laparotomy was performed at 24, 72, and 192 h postburn. Liver was harvested before and 1 min after insulin injection (1 IU/kg) into the portal vein, and expression patterns of various proteins known to be involved in insulin and ER-stress signaling were determined by Western blotting. mRNA expression of glucose-6-phosphatase and glucokinase were determined by reverse-transcriptase-polymerase chain reaction and fasting serum glucose and insulin levels by standard enzymatic and enzyme-linked immunosorbent assay techniques, respectively. Insulin resistance indicated by increased glucose and insulin levels occurred starting 24 h postburn. Burn injury resulted in activation of ER stress pathways, reflected by significantly increased accumulation of phospho-PKR-like ER-kinase and phosphorylated inositol requiring enzyme 1, leading to an elevation of phospho-c-Jun N-terminal kinase and serine phosphorylation of insulin receptor substrate (IRS) 1 postburn. Insulin administration caused a significant increase in tyrosine phosphorylation of IRS-1, leading to activation of the phosphatidylinositol 3 kinase/Akt pathway in normal liver. Postburn tyrosine phosphorylation of IRS-1 was significantly impaired, associated with an inactivation of signaling molecules acting downstream of IRS-1, leading to significantly elevated transcription of glucose-6-phosphatase and significantly decreased mRNA expression of glucokinase. Activation of ER-stress signaling cascades may explain metabolic abnormalities involving insulin action after burn.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据