4.4 Article

Kinetic Modeling of Arsenic Removal from Water by Ferric Ion Loaded Red Mud

期刊

SEPARATION SCIENCE AND TECHNOLOGY
卷 46, 期 15, 页码 2380-2390

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/01496395.2011.595757

关键词

adsorption isotherm; arsenic removal; ferric ion; kinetics; red mud

向作者/读者索取更多资源

A laboratory study was conducted to investigate the ability of ferric ion loaded red mud (FRM) for the removal of arsenic species from water. The adsorbent material was characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. For an initial arsenic concentration lower than 0.3 mg/L, the FRM with a dosage of 1 g/L was able to reduce As(III) at pH 7 below 10 mu g/L, the maximum contaminant level (MCL) of arsenic in drinking water set by the World Health Organization. In the case of As(V) removal, FRM was also particularly effective in reducing the initial arsenic concentration value of 1 mg/L at pH 2, below the MCL requirement of arsenic for drinking water. According to kinetic sorption data, the initial stage of adsorptions of As(III) and As(V) onto FRM were mainly governed by the external diffusion mechanism; however, upon saturation of the external adsorbent surface, the arsenic species were eventually adsorbed by intraparticle diffusion mechanism. The present results are promising for using the very inexpensive FRM as a low-cost material that is effective in remediating drinking waters contaminated with low concentrations of arsenic species. We report here the sorption kinetics and adsorption mechanisms of As(III) and As(V) on the FRM that has not been decsribed previously.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据