4.4 Article Proceedings Paper

Surfactant-enhanced Electrokinetic Remediation of Mixed Contamination in Low Permeability Soil

期刊

SEPARATION SCIENCE AND TECHNOLOGY
卷 44, 期 10, 页码 2385-2409

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/01496390902983745

关键词

Clays; electrokinetic remediation; heavy metals; mixed contamination; nickel; PAHs; phenanthrene; soils; surfactants

向作者/读者索取更多资源

Thousands of sites are contaminated with both heavy metals and organic compounds and these sites pose a major threat to the environment. Very few technologies, such as soil washing/flushing and stabilization/solidification, are available to remediate these sites; however, all these technologies are ineffective under low permeability and heterogeneous soil conditions. Previous studies have shown that electrokinetic remediation has potential to remove heavy metals and organic compounds when they exist individually in clayey soils. In the present study, the feasibility of using surfactants in electrokinetic remediation was evaluated to remove the PAHs in the presence of heavy metals from clayey soils. Kaolin was selected as a model clayey soil and it was spiked with phenanthrene and nickel at a concentration of 500mg/kg-dry each to simulate typical mixed contamination. Bench-scale electrokinetic tests were performed using deionized water and two different surfactants, Igepal CA-720 and Tween 80, at 3% and 5% (in weight) each at the anode. These solutions at the anode were circulated and were buffered with 0.01M NaOH to maintain neutral pH conditions. A periodic voltage gradient of 2V/cm (with 5 days on and 2 days off cycles) was applied for all the tests. There was a significant migration of phenanthrene towards cathode in all the tests. Among all the extracting solutions used, complete removal of phenanthrene was observed using 5% Igepal CA-720. In case of Tween 80, the low electroosmotic flow limited the delivery of Tween 80 into the soil and therefore, limiting the phenanthrene solubilization and transport. It was observed that solubilization, electroosmotic flow, and concentration of the extracting solution are the critical factors that contribute to the removal of phenanthrene. Nickel electromigrated as cation towards the cathode and precipitated in the soil near the cathode due to high pH in all tests. Overall, nickel migration pattern was not affected by the presence of phenanthrene and the extracting solutions used in this study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据