4.7 Article

Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes

期刊

SEPARATION AND PURIFICATION TECHNOLOGY
卷 106, 期 -, 页码 63-71

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.seppur.2012.12.028

关键词

Hexavalent chromium; Powdered activated carbon; Chitosan; Single-walled carbon nanotubes; Multi-walled carbon nanotubes

资金

  1. Korea Ministry of Environment [414-111-004, 2012000550022]
  2. Korea Environmental Industry & Technology Institute (KEITI) [414-111-004] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The adsorption behavior of ppb-level aqueous solutions of hexavalent chromium [Cr(VI)] on four different adsorbents was investigated as a function of pH, contact time, initial Cr(VI) concentration, adsorbent dose, and the copresence of competing anions. The adsorbents selected were powered activated carbon (PAC), chitosan, single-walled carbon nanotubes (SWNTs), and multi-walled carbon nanotubes (MWNTs). Each adsorbent was characterized by Fourier transform infrared spectroscopy and measurements of zeta potential to determine its suitability for Cr(VI) adsorption. The adsorption of Cr(VI) was found to be favored at low pH because all adsorbents were positively charged under acidic conditions (pH 4), while a dosage of 100 mg/L resulted in efficient adsorption behavior. PAC and chitosan provided the best removal performance. The highly functionalized and porous PAC and the protonated amines on chitosan enabled a better performance and resulted in high Cr(VI) removal efficiencies of 99.4% and 94.7%, respectively, while the removal efficiencies of SWNTs and MWNTs were 72.9% and 51.9%, respectively. Isotherm and kinetic studies were undertaken to evaluate the characteristics of the Cr(VI) adsorption process. A well-fitted Langmuir isotherm model suggested that monolayer adsorption was the main process operating with an adsorption capacity (q(m)) of 46.9, 35.6, 20.3, and 2.48 mg/g for PAC, chitosan, SWNTs, and MWNTs, respectively. Pseudo second-order fitted models revealed the importance of kinetic parameters (apart from adsorption capacity) in understanding the transport of Cr(VI) in the solution, while an intra-particle diffusion model fitted well for mu g/L levels of Cr(VI) adsorption. This indicated that both physisorption and chemisorption were dominant, particularly for SWNTs. Anions such as Cl- and SO42- in the solution competed with HCrO4- and this phenomenon resulted in negative effects on Cr(VI) adsorption. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据