4.7 Article Proceedings Paper

Fundamental understanding of swirling flow pattern in hydrocyclones

期刊

SEPARATION AND PURIFICATION TECHNOLOGY
卷 92, 期 -, 页码 152-160

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.seppur.2011.12.011

关键词

Hydrocyclone; Swirling flow; Air core; Turbulence model

向作者/读者索取更多资源

This work is concerned with establishing and validating a physics-based model that describes the swirling flow inside hydrocyclones. The physics is embedded in a Computational Fluid Dynamics (CFD) simulation model whose key features are presented and justified in the paper. Some features are selected in such a way that the model can eventually be used to simulate dense flow inside hydrocyclones. Nevertheless, its underlying physics is here within validated against dilute flow conditions. The model applies a Eulerian multi-fluid modelling approach for fluid-particle turbulent flows, and is computed using the semi-industrial code NEPTUNE_CFD. Simulation results are successfully compared to water split, velocity profiles inside the hydrocyclone and partition function measurements, either produced using our own experimental setup or from the literature. The work finds velocity profiles to be the most discriminating parameter for validation of the physics that describes the swirling flow inside the hydrocyclone. Water split on the other hand shows no relation to the choice of turbulence model and hence cannot be used to validate a mechanistic model of the hydrocyclone. The physics-based model presented here is the first building block towards describing and understanding hydrocyclone flow under dense regime. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据