4.7 Article

Preparation and characterization of BiVO4 film electrode and investigation of its photoelectrocatalytic (PEC) ability under visible light

期刊

SEPARATION AND PURIFICATION TECHNOLOGY
卷 64, 期 3, 页码 309-313

出版社

ELSEVIER
DOI: 10.1016/j.seppur.2008.10.015

关键词

BiVO4 film; Visible light; Photocatalytic process; Photoelectrocatalytic process; Phenol degradation

资金

  1. National Science Fund for Distinguished Young Scholars of China [20525723]

向作者/读者索取更多资源

BiVO4 film coated on F-doped SnO2 (FTO) glass was successfully fabricated by modified metalorganic decomposition (MOD) technique. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) images showed that the film was composed of grains with 200-300 nm in size and the grains were composed of particles, which were about 10 nm in size. Diffused reflectance spectroscopy (DRS) revealed that the absorption performance of the BiVO4 film was intense in visible light region and the band gap was 2.43 eV. The analysis of X-ray diffractometry (XRD) and Raman spectra identified to the monoclinic type BiVO4. Photoelectrochemical measurements indicated the photocurrent densities of BiVO4 films had an elevation with the increase of film thickness from 0.23 to 1.04 p,m due to enhanced amount of absorption of the incident photons. The removal rate of phenol in photoelectrocatalytic (PEC) process by the BiVO4 film electrode under visible light (>400 nm) was 27.1 times that in photocatalytic (PC) process. The prominent enhancement was induced by the promoted separation of photogenerated electron-hole pairs. Furthermore, the BiVO4 film electrode coated on FTO glass showed good stability in the PEC process. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据