4.7 Article

Absorption of dissolved organic species from water using organically modified silica that swells

期刊

SEPARATION AND PURIFICATION TECHNOLOGY
卷 66, 期 3, 页码 532-540

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.seppur.2009.02.001

关键词

Absorption; Organic contaminants; Organosilica; Swell

向作者/读者索取更多资源

Organically modified silica that rapidly and reversibly swells to >3 times their dry volume have been recently described. Here, these organosilica materials were demonstrated to have the ability absorb trichloroethylene(TCE), perchloroethylene (PCE), methyl t-butyl ether (MTBE), toluene, naphthalene, acetone, 1,4-dioxane, and 1-butanol from water. Direct experimental comparisons indicated that swellable organically modified silica (SOMS) has in many instances greater capacity than activated carbon and molecular sieves and possesses the ability to capture a wide range of dissolved polar and non-polar organic contaminants. The absorption of organic species to SOMS is enhanced by matrix expansion leading to non-selective capture of organics beyond what could only be attributed to physisorption. This process appears to be facilitated by initial adsorption events unlatching the collapsed matrix leading to the opening of nanometer-scale pores within the tensioned SOMS material, thus providing volume for absorption. Partition coefficients for the absorption of organic species from water by SOMS ranged from 2.8 x 10(5) to 1.0 x 10(2), and vary depending on polarity of the contaminant, concentration, and the total mass of contaminant absorbed. Maximum capacity exceed three times the dry weight of the absorbent under conditions of high contaminant concentration. SOMS was repeatedly regenerated with mild thermal treatment (60-110 degrees C) in air to evaporate absorbates from the matrix which could be subsequently collected. Only a slight decrease in effectiveness is observed after regeneration. Absorption is equally effective from salt water. Minimal loss of capacity and affinity is lost when extracting environmentally relevant concentrations of TCE from a topsoil/water mixture, presumably due to a molecular sieving effect. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据