4.7 Article

Selective discrimination of hazardous gases using one single metal oxide resistive sensor

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 277, 期 -, 页码 121-128

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2018.08.103

关键词

Resistive gas sensor; Hazardous gas; Metal oxide; Nanowire; Selectivity

资金

  1. Ministry of Science and Technology

向作者/读者索取更多资源

Monitoring of hazardous gases is nowadays very important, since the urbanized environment is more subject to this kind of pollutants. Therefore, a capillary network of small gas sensors capable to check the quality of the environment is necessary. Metal oxide gas nanosensors are small economic devices that can be easily integrated in any context, however they unfortunately lack of selectivity. We present an approach using hydrothermally grown nickel oxide nanowires working at different temperatures and creating a virtual sensors array, thus exploiting the thermal fingerprints (sensor response as a function of temperature) of the gases. Using only one nanostructured material (nickel oxide) and different machine learning techniques, the system can easily discriminate any of 7 harmful gases (C2H5OH, H-2, CO, LPG, CO2, NH3 and H2S, all of them reducing gases) with an accuracy of 100%. Furthermore, the nanosensor also evaluates the gas concentration with an average error lower than 15%. Our results show that, exploiting thermal fingerprints from a temperature gradient, single metal oxide resistive nanosensors can efficiently discriminate specific hazardous gases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据