4.7 Article

Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 274, 期 -, 页码 356-369

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2018.07.158

关键词

Branched nanowire; SnO2; Bi2O3; Gas sensor; Selectivity

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Education [2016R1A6A1A03013422]

向作者/读者索取更多资源

We present a highly sensitive and selective NO2 sensor based on Bi2O3 branched SnO2 nanowires (NWs). SnO2 NWs were first synthesized by a vapor-liquid-solid method, were coated with an Au layer, and Bi(2)O3 branches were grown on their stems by the same procedure used for pure Bi powders. The fabricated sensor showed a high response (Rg/Ra) of 56.92 to 2 ppm of NO2 gas at an optimal temperature. Furthermore, its response to other interfering gases such as ethanol, acetone, toluene, and benzene, was less than 1.55, which demonstrated excellent selectivity of the sensor towards NO2 gas. For comparison and to better understand the sensing mechanism, a pristine SnO2 NWs sensor was also tested. The superior sensing properties of the branched NW sensor relative to the pristine sensor were mainly attributed to the high surface area of the sensor resulting from Bi2O3 branching, as well as the formation of homo-and heterojunctions (Bi2O3-SnO2). In addition, several factors including the presence of Au contributed to the excellent selectivity to NO2 gas. Based on the results obtained in this work, we believe that the present sensor with an easy fabrication method, along with its high sensitivity and selectivity towards NO2, can be used for the detection of NO2 gas in real applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据