4.7 Article

Strain-induced significant increase in metal-insulator transition temperature in oxygen-deficient Fe oxide epitaxial thin films

期刊

SCIENTIFIC REPORTS
卷 5, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep07894

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan
  2. Japan Science and Technology Agency, CREST
  3. [24760009]
  4. [24540346]

向作者/读者索取更多资源

Oxygen coordination of transition metals is a key for functional properties of transition-metal oxides, because hybridization of transition-metal d and oxygen p orbitals determines correlations between charges, spins and lattices. Strain often modifies the oxygen coordination environment and affects such correlations in the oxides, resulting in the emergence of unusual properties and, in some cases, fascinating behaviors. While these strain effects have been studied in many of the fully-oxygenated oxides, such as ABO(3) perovskites, those in oxygen-deficient oxides consisting of various oxygen coordination environments like tetrahedra and pyramids as well as octahedra remain unexplored. Here we report on the discovery of a strain-induced significant increase, by 550 K, in the metal-insulator transition temperature of an oxygen-deficient Fe oxide epitaxial thin film. The observed transition at 620 K is ascribed to charge disproportionation of Fe3.66+ into Fe4+ and Fe3+, associated with oxygen-vacancy ordering. The significant increase in the metal-insulator transition temperature, from 70 K in the bulk material, demonstrates that epitaxial growth of oxygen-deficient oxides under substrate-induced strain is a promising route for exploring novel functionality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据