4.7 Article

Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface

期刊

SCIENTIFIC REPORTS
卷 5, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep18106

关键词

-

资金

  1. National Basic Research Program (973 Program) of China [2012CB921900]
  2. Chinese National Key Basic Research Special Fund [2011CB922003]
  3. Natural Science Foundation of China [11574163, 61378006, 11304163]
  4. Program for New Century Excellent Talents in University [NCET-13-0294]
  5. Natural Science Foundation of Tianjin [13JCQNJC01900]
  6. Specialized Research Fund for the Doctoral Program of Higher Education [20120031120032]
  7. 111 project [B07013]

向作者/读者索取更多资源

The arbitrary control of the polarization states of light has attracted the interest of the scientific community because of the wide range of modern optical applications that such control can afford. However, conventional polarization control setups are bulky and very often operate only within a narrow wavelength range, thereby resisting optical system miniaturization and integration. Here, we present the basic theory, simulated demonstration, and in-depth analysis of a high-performance broadband and invertible linear-to-circular (LTC) polarization converter composed of a single-layer gold nanorod array with a total thickness of similar to lambda/70 for the near-infrared regime. This setup can transform a circularly polarized wave into a linearly polarized one or a linearly polarized wave with a wavelength-dependent electric field polarization angle into a circularly polarized one in the transmission mode. The broadband and invertible LTC polarization conversion can be attributed to the tailoring of the light interference at the subwavelength scale via the induction of the anisotropic optical resonance mode. This ultrathin single-layer metasurface relaxes the high-precision requirements of the structure parameters in general metasurfaces while retaining the polarization conversion performance. Our findings open up intriguing possibilities towards the realization of novel integrated metasurface-based photonics devices for polarization manipulation, modulation, and phase retardation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据