4.7 Article

Positioning of cells flowing in a fluidic channel by negative dielectrophoresis

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 186, 期 -, 页码 9-16

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2013.05.048

关键词

Dielectrophoresis; Microfluidic device; Cell manipulation; Cell navigation

资金

  1. Grants-in-Aid for Scientific Research [25410148, 24106511] Funding Source: KAKEN

向作者/读者索取更多资源

Control of the flow position of cells in a microchannel is useful for developing cell separation systems. We demonstrated that cells with different sizes were transported through different gaps by a repulsive force generated by negative dielectrophoresis (n-DEP). A device was fabricated by sandwiching a polyester film with a fluidic channel between upper and lower substrates with design same as that of navigator and separator electrodes which were used to concentrate the flowing cells in the center of the channel and to guide them to gaps of different sizes, respectively. The performance of the system was assessed using a human acute monocytic leukemia cell line (THP-1) and red blood cells (RBCs) from preserved equine blood as model cells. The cells flowed along the edges of navigator electrodes to concentrate in the center of the channel because of a strong repulsive force between the upper and lower substrates induced by the application of an AC electric field. THP-1 and RBCs passed through gaps of different sizes in a separator consisting of a microelectrode array. Passage efficiencies for THP-1 and RBCs through the desired gaps were found to be 88% and 44%, respectively. The results indicate the possibility of the continuous separation of cells with different sizes in the fluidic device based on n-DEP. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据