4.7 Article

Low temperature CO sensitive nanostructured WO3 thin films doped with Fe

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 162, 期 1, 页码 14-21

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2011.11.038

关键词

Tungsten oxide; Nanostructured thin films; Gas sensing; Doping; Thermal evaporation; CO sensor

资金

  1. Queensland University of Technology

向作者/读者索取更多资源

Nanostructured tungsten oxide thin film based gas sensors have been developed by thermal evaporation method to detect CO at low operating temperatures. The influence of Fe-doping and annealing heat treatment on microstructural and gas sensing properties of these films have been investigated. Fe was incorporated in WO3 film by co-evaporation and annealing was performed at 400 degrees C for 2 h in air. AFM analysis revealed a grain size of about 10-15 nm in all the films. GIXRD analysis showed that as-deposited films are amorphous and annealing at 400 degrees C improved the crystallinity. Raman and XRD analysis indicated that Fe is incorporated in the WO3 matrix as a substitutional impurity, resulting in shorter O-W-O bonds and lattice cell parameters. Doping with Fe contributed significantly toward CO sensing performance of WO3 thin films. A good response to various concentrations (10-1000 ppm) of CO has been achieved with 400 degrees C annealed Fe-doped WO3 film at a low operating temperature of 150 degrees C. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据