4.7 Article Proceedings Paper

Sensing mechanism of room temperature CO2 sensors based on primary amino groups

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 154, 期 2, 页码 270-276

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2010.01.022

关键词

CO2; Carbamate; Bicarbonate; Room temperature; Primary amino groups; Spectroscopy; Work function; Amino siloxane

向作者/读者索取更多资源

This work reports measurements to elucidate the reaction mechanisms of sensitive materials containing primary amino groups with CO2. The sensing mechanism is based on their ability to perform reversible acid-base reactions. The effect discussed for most of the previously used sensing layers concerns the formation of bicarbonate species, which requires H2O as well as an increased temperature. By using work function readout technology an operation at room temperature of the sensing layers is enabled providing satisfying sensor responses in terms of SNR (signal noise ratio) and response time. In contrast to the previously investigated higher operation temperature, the response resulting from a room temperature measurement appears to be dominated by the reversible formation of carbamate, which does not require the presence of water. The presence of carbamate is considered to be the reason of the improved sensing performance of this sensing material at room temperature with work function readout. To confirm this hypothesis, DRIFT-MIR, Raman, XPS and NMR spectroscopy were employed to investigate the formation of species after manufacturing of the sensitive layers. Besides the formation of bicarbonate, the results show a strong indication for carbamate formation. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据