4.7 Article

A polymer lab chip sensor with microfabricated planar silver electrode for continuous and on-site heavy metal measurement

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 155, 期 1, 页码 145-153

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2010.11.039

关键词

Lead (Pb(II)); On-site measurement; Reusable polymer lab chip sensor; Silver electrode; Square-wave anodic stripping voltammetry (SWASV)

资金

  1. National Institute of Environmental Health Sciences (NIEHS) in the National Institute of Health (NIH) [R01 ES015446]

向作者/读者索取更多资源

This paper presents a reusable polymer lab chip sensor for continuous and on-site heavy metal monitoring in nature. In particular, detection of lead (Pb(II)), which is the most common heavy metal pollutant, has been performed using the proposed lab chip sensor. The miniaturized lab chip sensor consists of a microfabricated silver working electrode that replaces the conventional mercury and bismuth electrodes, an integrated silver counter and quasi-reference electrode, and microfluidic channels. The proposed sensor targets on-site environmental monitoring in a continuous fashion without disturbing or contaminating the sensing environment when it is reused. The reusability of the miniaturized lab chip sensor was characterized through forty-three consecutive measurements in non-deoxygenating standard solutions inside the microchannels using square-wave anodic stripping voltammetry (SWASV). With only 13.5 mu L of sample volume the sensor chip showed a correlation coefficient of 0.998 for the Pb(II) concentration range of 1-1000 ppb with the limit of detection of 0.55 ppb at 300 s deposition time. The peak potentials during the forty-three consecutive SWASV measurements showed a relative standard deviation of 1.0%, with a standard deviation of 0.005 V. The high repeatability and linearity of the sensor over the large, three orders of magnitude, dynamic range of 1-1000 ppb showed that the developed sensor chip can be reused for a variety of on-site measurements such as for soil pore water or groundwater, using only micro-volumes. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据