4.7 Article

Microsensor technology for measuring H+ flux in buffered media

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 136, 期 2, 页码 383-387

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2008.12.017

关键词

Proton flux; Self-referencing; Buffered solutions; pH sensitive dye; Linear buffer constant

资金

  1. Applicable Electronics, Inc.
  2. USDA
  3. NSF
  4. School of Civil Engineering at Purdue University
  5. Center of the Environment

向作者/读者索取更多资源

Nearly all experiments designed to quantify phenomena in biological systems are conducted in the presence of buffers. Most analytical techniques measure free proton activity, and do not account for the activity of protons associated with buffer molecules, potentially leading to an underestimation of biophysical proton transport. In applications where total proton flux activity at the level of biological membranes is of interest, a dynamic biophysical approach is required. This paper presents a simplified method and data filtering algorithm for measuring electrophysiological, transmembrane H(+) flux activities in buffered media based on the self-referencing microsensor technique. A simplified mathematical model was developed that accounts for chemical H(+) buffering in a background matrix of buffer molecules. The model and buffer correction algorithm were validated for various biochemically relevant buffers over the 6.1-10.7 pH range. The buffer correction algorithm was used to filter the output of a self-referencing ion-selective H(+) sensor for the measurement of proton flux. Special emphasis has been placed on the use of pH sensitive micro-electrodes when operating as self-referencing flux sensors, but the analytical method is also applicable to the use of static electrodes and pH sensitive dyes. (c) 2009 Elsevier B,V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据