4.7 Article

Bifunctional organic/inorganic nanocomposites for energy harvesting, actuation and magnetic sensing applications

期刊

SENSORS AND ACTUATORS A-PHYSICAL
卷 211, 期 -, 页码 105-114

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2014.02.010

关键词

Composite; Electrospinning; Electrostriction; Magnetoelectric effect; Iron carbide

资金

  1. Institut Carnot Ingenierie@Lyon

向作者/读者索取更多资源

The fabrication of a single material being a competitive actuator as well as an electric current generator is no longer a challenge. This article presents novel nanocomposites based on a polyurethane (PU) matrix containing (0-5 wt.%) iron carbide-based nanofillers (Fe3C@C) fabricated by electrospinning. Such materials have both electrostrictive and magnetoelectric properties. The introduction of conductive fillers in PU, which is a good candidate for actuating applications, improved the electro-mechanical coupling due to an increase in the composite permittivity. A significant increase of the dielectric permittivity and an almost 7 fold gain for the deflection strain under 17 Wpm were measured on a diaphragm-type actuator for the PU-2.5 wt.% Fe3C@C nanocomposite. It was shown that a higher loading led to reduced actuation properties, probably due to the presence of Fe3C aggregates in the composite as shown by Focused Ion Beam characterization. The magnetoelectric (ME) properties of the nanocomposites still showed an increase for contents over 2.5 wt.%. The current generated by the nanocomposite, when subjected to a magnetic field, was comparable or higher than several ceramic materials and at least 100 times higher than polymer-based systems studied for their ME behavior. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据