4.7 Article

Study of polyvinylidene fluoride (PVDF) based bimorph actuators for laser scanning actuation at kHz frequency range

期刊

SENSORS AND ACTUATORS A-PHYSICAL
卷 183, 期 -, 页码 84-94

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2012.05.019

关键词

Actuators; PVDF; Electroactive polymers; Laser switching; Scanning

向作者/读者索取更多资源

This work focuses on some promising applications of polyvinylidene fluoride (PVDF) based bimorph actuators in microengineering. The actuator of several centimeters in length and 100 mu m in thickness takes advantage of the structural and electromechanical capabilities of the PVDF. These characteristics make the proposed PVDF based bimorph ideal for a laser scanner/switcher where high speed laser beam manipulation is feasible. This domain requires light and efficient actuators capable of actuating the mirror surface at kHz frequency range and having a weight of less than 200 mg and volume of less than 150 mm(3). Analytical and finite element (FE) modeling were used to design the bimorph actuator with an attached mirror on the tip. Results of the modeling were also used to establish dimension criteria for the proposed bimorphs with an attached mirror. Some clean and gray room processing was needed to fabricate the bimorph actuators. Static and dynamic characterization was carried out to validate the response of the proposed actuator. Other bimorph based configurations were analyzed and compared to the proposed one. Results indicate that the PVDF bimorph actuator responds conveniently in a range up to 3 kHz for beam scanning tasks. The same principle may be implemented to 2 DoF actuators. Results obtained from modeling tools indicate a similar performance in terms of displacement. In addition, due to the intrinsic properties of the PVDF, the actuation system is compact which is advantageous for other domains such as biomedical and aerospace. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据