4.7 Article

Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator

期刊

SENSORS AND ACTUATORS A-PHYSICAL
卷 158, 期 2, 页码 284-293

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2010.01.002

关键词

Tunable; Micro-generator; Electromagnetic; Vibration energy harvesting

向作者/读者索取更多资源

Vibration-based micro-generators, as an alternative source of energy, have become increasingly significant in the last decade. This paper presents a new tunable electromagnetic vibration-based micro-generator. Frequency tuning is realized by applying an axial tensile force to the micro-generator. The dimensions of the generator, especially the dimensions of the coil and the air gap between magnets, have been optimized to maximize the output voltage and power of the micro-generator. The resonant frequency has been successfully tuned from 67.6 to 98 Hz when various axial tensile forces were applied to the structure. The generator produced a power of 61.6-156.6 mu W over the tuning range when excited at vibrations of 0.59 m s(-2). The tuning mechanism has little effect on the total damping. When the tuning force applied on the generator becomes larger than the generator's inertial force, the total damping increases resulting in reduced output power. The resonant frequency increases less than indicated from simulation and approaches that of a straight tensioned cable when the force associated with the tension in the beam becomes much greater than the beam stiffness. The test results agree with the theoretical analysis presented. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据