4.6 Article

Transfer Learning for Soil Spectroscopy Based on Convolutional Neural Networks and Its Application in Soil Clay Content Mapping Using Hyperspectral Imagery

期刊

SENSORS
卷 18, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/s18093169

关键词

transfer learning; deep learning; CNNs; hyperspectral imagery; soil spectroscopy

资金

  1. German Research Foundation
  2. Open Access Publication Funds of the TU Dresden
  3. China Scholarship Council (CSC)

向作者/读者索取更多资源

Soil spectra are often measured in the laboratory, and there is an increasing number of large-scale soil spectral libraries establishing across the world. However, calibration models developed from soil libraries are difficult to apply to spectral data acquired from the field or space. Transfer learning has the potential to bridge the gap and make the calibration model transferrable from one sensor to another. The objective of this study is to explore the potential of transfer learning for soil spectroscopy and its performance on soil clay content estimation using hyperspectral data. First, a one-dimensional convolutional neural network (1D-CNN) is used on Land Use/Land Cover Area Frame Survey (LUCAS) mineral soils. To evaluate whether the pre-trained 1D-CNN model was transferrable, LUCAS organic soils were used to fine-tune and validate the model. The fine-tuned model achieved a good accuracy (coefficient of determination (R-2) = 0.756, root-mean-square error (RMSE) = 7.07 and ratio of percent deviation (RPD) = 2.26) for the estimation of clay content. Spectral index, as suggested as a simple transferrable feature, was also explored on LUCAS data, but did not performed well on the estimation of clay content. Then, the pre-trained 1D-CNN model was further fine-tuned by field samples collect in the study area with spectra extracted from HyMap imagery, achieved an accuracy of R-2= 0.601, RMSE = 8.62 and RPD = 1.54. Finally, the soil clay map was generated with the fine-tuned 1D-CNN model and hyperspectral data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据